Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Preparing long-range entangled states poses significant challenges for near-term quantum devices. It is known that measurement and feedback (MF) can aid this task by allowing the preparation of certain paradigmatic long-range entangled states with only constant circuit depth. Here, we systematically explore the structure of states that can be prepared using constant-depth local circuits and a single MF round. Using the framework of tensor networks, the preparability under MF translates to tensor symmetries. We detail the structure of matrix-product states (MPSs) and projected entangled-pair states (PEPSs) that can be prepared using MF, revealing the coexistence of Clifford-like properties and magic. In one dimension, we show that states with Abelian-symmetry-protected topological order are a restricted class of MF-preparable states. In two dimensions, we parametrize a subset of states with Abelian topological order that are MF preparable. Finally, we discuss the analogous implementation of operators via MF, providing a structural theorem that connects to the well-known Clifford teleportation. Published by the American Physical Society2024more » « less
-
What can one infer about the dynamical evolution of quantum systems just by symmetry considerations? For Markovian dynamics in finite dimensions, we present a simple construction that assigns to each symmetry of the generator a family of scalar functions over quantum states that are monotonic under the time evolution. The aforementioned monotones can be utilized to identify states that are non-reachable from an initial state by the time evolution and include all constraints imposed by conserved quantities, providing a generalization of Noether's theorem for this class of dynamics. As a special case, the generator itself can be considered a symmetry, resulting in non-trivial constraints over the time evolution, even if all conserved quantities trivialize. The construction utilizes tools from quantum information-geometry, mainly the theory of monotone Riemannian metrics. We analyze the prototypical cases of dephasing and Davies generators.more » « less
An official website of the United States government
